Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

A Nonoxidative Approach to Methane Functionalization: Efforts Towards Realizing the Methanol Economy

Methane, CH4, is considered a pillar of the petrochemical industry. It is a major component of fossil fuels, a byproduct of waste decomposition, and a potent greenhouse gas. The potential of methane as a fuel source is greatly limited by the means in which this flammable gas may be transported. In this regard, functionalization of CH4 to yield products that are liquids under ambient conditions holds great promise.

Type of Event:

Sodium Chloride Nanoparticles as Bladder Cancer Therapeutics

The project is based on the hypothesis that SCNPs can break the osmotic balance across the plasma membrane of cancer cells. Ion homeostasis is essential for maintaining the integrity of the plasm membrane and sustaining the normal cell functions. Breaking the homeostasis could disrupt the potential balance and interrupt essential cellular processes. Instead of using organic ionophores, we explore SCNPs as a new strategy to carry ions across the plasma membrane, eventually causing cancer cell death.

Strategies for the Reduction of Detailed Chemical Kinetics Mechanisms

Detailed chemical kinetics mechanisms describing low-temperature combustion often include thousands of species and reactions due to the abundance of intermediates and their complex potential energy surfaces. While these mechanisms are necessary for accurately predicting species concentrations and global combustion metrics, they are often too large for practical engine simulations that require computational fluid dynamics.

Type of Event:

Quantum Computers for Quantum Chemistry: Making the Best of a Limited Technology

Development of error correcting quantum computers for practical computations still lies out of reach. However, many algorithms have been designed for use with near-term quantum computers, commonly referred to as Noisy Intermediate-Scale Quantum (NISQ) devices. On such devices, there is a conflict between increasing computational power while maintaining a short quantum circuit depth. More circuits are needed to simulate more complex systems, but at the cost of a deeper quantum circuit which is often not achievable on NISQ devices.

Type of Event:

Energetics and Kinetics of Various Cyano Radical Hydrogen Abstractions

The cyano radical (CN) is an abundant, open-shell molecule found in a variety of environments, including the atmosphere, the interstellar medium and combustion processes. In these environments, it often reacts with small, closed-shell molecules via hydrogen abstraction. Both carbon and nitrogen atoms of the cyano radical are reactive sites, however the carbon is more reactive with reaction barrier heights generally between 2-15 kcal/mol lower than those of the analogous nitrogen.

Type of Event:

Mechanistic Investigation Towards Catalytic NO2– Reduction by Nonheme Fe(II)-Nitro Complexes

Nitrite (NO2) reduction to gaseous nitric oxide (NO) is a 2H+/1e transfer process that can be catalyzed by heme enzyme nitrite reductase (NiR). It is critical in maintaining the balance of the global nitrogen cycle because it is the first committed step in the denitrification process.

Type of Event:

Defining the Roles of Metals in Mediating Structural Changes and Protein-Protein Interactions

Metals are ubiquitous in nature. In fact, more than 30% of all proteins require a metal for proper folding or function. In this talk, I will focus on how my lab uses a range of spectroscopic characterization tools to define the role of metals on protein structure and formation of dynamic protein-protein complexes.

Type of Event:

Unzipping the ZIPs: Transport Mechanism and Substrate Specificity of ZIP Metal Transporters

Living organisms have evolved sophisticated systems to exploit unique properties of d-block metals for catalysis, cell signaling, and gene regulation. A challenge is how to efficiently and specifically uptake, excrete, and distribute/redistribute these low-abundance trace elements at the systemic and cellular levels. Transition metal transporters are central players in these processes by controlling the flux of metals across cell and organelle membranes.

Type of Event:

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin