TitleSpectroscopic and Redox Studies of Valence-Delocalized [Fe2S2](+) Centers in Thioredoxin-like Ferredoxins.
Publication TypeJournal Article
Year of Publication2015
AuthorsSubramanian, S, Duin, EC, Fawcett, SEJ, Armstrong, FA, Meyer, J, Johnson, MK
JournalJ Am Chem Soc
Volume137
Issue13
Pagination4567-80
Date Published2015 Apr 8
ISSN1520-5126
Abstract

Reduced forms of the C56S and C60S variants of the thioredoxin-like Clostridium pasteurianum [Fe2S2] ferredoxin (CpFd) provide the only known examples of valence-delocalized [Fe2S2](+) clusters, which constitute a fundamental building block of all higher nuclearity Fe-S clusters. In this work, we have revisited earlier work on the CpFd variants and carried out redox and spectroscopic studies on the [Fe2S2](2+,+) centers in wild-type and equivalent variants of the highly homologous and structurally characterized Aquifex aeolicus ferredoxin 4 (AaeFd4) using EPR, UV-visible-NIR absorption, CD and variable-temperature MCD, and protein-film electrochemistry. The results indicate that the [Fe2S2](+) centers in the equivalent AaeFd4 and CpFd variants reversibly interconvert between similar valence-localized S = 1/2 and valence-delocalized S = 9/2 forms as a function of pH, with pKa values in the range 8.3-9.0, because of protonation of the coordinated serinate residue. However, freezing high-pH samples results in partial or full conversion from valence-delocalized S = 9/2 to valence-localized S = 1/2 [Fe2S2](+) clusters. MCD saturation magnetization data for valence-delocalized S = 9/2 [Fe2S2](+) centers facilitated determination of transition polarizations and thereby assignments of low-energy MCD bands associated with the Fe-Fe interaction. The assignments provide experimental assessment of the double exchange parameter, B, for valence-delocalized [Fe2S2](+) centers and demonstrate that variable-temperature MCD spectroscopy provides a means of detecting and investigating the properties of valence-delocalized S = 9/2 [Fe2S2](+) fragments in higher nuclearity Fe-S clusters. The origin of valence delocalization in thioredoxin-like ferredoxin Cys-to-Ser variants and Fe-S clusters in general is discussed in light of these results.

DOI10.1021/jacs.5b01869
Alternate JournalJ. Am. Chem. Soc.
PubMed ID25790339
Include in Short List: 
1